US009251028B2

a2 United States Patent

Barr et al.

US 9,251,028 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MANAGING CODE INSTRUMENTATION IN A
PRODUCTION COMPUTER PROGRAM
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72)

Inventors: Arthur J. Barr, Southampton (GB);

Hannah J. Deakin, Southampton (GB)
(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 13/926,250

Filed: Jun. 25,2013

Prior Publication Data

US 2014/0040866 A1l Feb. 6, 2014

(65)

(30) Foreign Application Priority Data

................................... 1213545.5

Jul. 31,2012 (GB)

(51) Imt.ClL

GO6F 9/44

GO6F 11734

GO6F 11730

GO6F 1136

U.S. CL

CPC GO6F 11/3409 (2013.01); GO6F 11/3093

(2013.01); GO6F 113644 (2013.01); GO6F

1173676 (2013.01); GOGF 2201/865 (2013.01)

Field of Classification Search

USPC 717/127

See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

(58)

Code Coverage
Manager Program ?\

(56) References Cited

U.S. PATENT DOCUMENTS

7,581,209 B2 8/2009 Filho

7,747,987 Bl 6/2010 Akarte et al.

7,926,042 B2* 4/2011 Mehtaetal. 717/130

9,003,379 B2* 4/2015 Kuzmincccceevvuenee. 717/130
2003/0229889 Al 12/2003 Kuzmin et al.
2004/0054992 Al* 3/2004 Nairetal. ..o 717/138
2004/0060043 Al* 3/2004 Frysinger et al. .. T17/158
2005/0007272 Al* 1/2005 Smithetal. 342/189
2006/0271677 Al* 112006 Mercier 709/224
2007/0168998 Al* 7/2007 Mehta et al. .. 717/130
2007/0277167 Al* 112007 Smithetal. 717/168
2008/0148039 Al 6/2008 Cobb et al.
2009/0249316 Al* 10/2009 Cascaval etal. 717/145
2010/0037101 Al* 2/2010 Zakonovetal. ... 714/38
2010/0131930 Al 5/2010 Ben-Chaim et al.
2010/0146340 Al 6/2010 Bhate et al.

(Continued)
OTHER PUBLICATIONS

Vetter et al, “Managing Performance Analysis with Dynamic Statis-
tical Projection Pursuit”, 1999, ACM.*

(Continued)

Primary Examiner — Anna Deng
Assistant Examiner — Junchun Wu
(74) Attorney, Agent, or Firm — Law Office of Jim Boice

(57) ABSTRACT

A method, system, and/or computer program product man-
ages code instrumentation in a production computer program.
Performance data from instrumentation code associated with
a portion of code of a production computer program is
received. One or more processors compare the performance
datato a predetermined performance threshold. In response to
the performance data meeting the predetermined perfor-
mance threshold, one or more processors remove the instru-
mentation code for the portion of code.

9 Claims, 5 Drawing Sheets

Production
Anplication Frogram

Code Portion KL

\ - — 1]
\ H
A Code Portion {—
! [_coseponon =

—— - 109

~-109

110

] 110

US 9,251,028 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2011/0047532 Al 2/2011 Wang

2011/0115495 Al* 5/2011 Kunii .cooooiiviininne
2011/0161486 Al* 6/2011 Podjarny et al.

2011/0202904 Al 82011 Razetal

2011/0283263 Al* 11/2011 Gagliardi etal.
2011/0283264 Al* 11/2011 Gagliardi

.. 709/224 IBM Corporation, “IBM Rational Purifyplus” IBM Corporation,

2012/0023487 Al* 1/2012 Letcaetal. 717/130
OTHER PUBLICATIONS

Katchabaw et al. “Policy Driven Fault management in Distributed
324/543 Systems”, Oct. 1996, ISSRE, pp. 236-245.*

2007, pp. 1-4.

...... 717/130
...... 717/130 * cited by examiner

US 9,251,028 B2

Sheet 1 of 5

Feb. 2, 2016

U.S. Patent

B0 - ,
a4 UDIHOd BP0
O w, m\ .}.af;....‘....v
) UOIOG 8Pel
601
\

£0L
01 =107 S
g0 i K ,r.,,)

LN |
X Y i

i i

i

W00

e} UOILO BPOD

~ uoiod 8pe0

weiboig uoneoyddy
LOHANPOIA

| 24nbiy

weibotly 1ebeuepy
2BBI8A07 8P0OD

US 9,251,028 B2

Sheet 2 of 5

Feb. 2, 2016

U.S. Patent

Z 2unbig
“ m
L1 pousaug cony o000 |
g BBEIDA0D BP0 Y
gmkm 502
R oifo sebeuepy S0BIBA0D BP0 . _
m, 10z
” ™\
u_
607 “
: : fom J043 “
\wu\a alielsacsy apog 1 ,}Z/
Loz AT

U.S. Patent Feb. 2, 2016 Sheet 3 of 5 US 9,251,028 B2

21—
01~/ nitialize)

\K Testing)

¥
302 ™ Instrumant

~ davelopment code
for code coverage

¥
303 Perform testing
\ and monitor code
coverage

Remove

304~ instrumentation

-~ code for covered

sactions of code
onty

y

.} Create production
code and deploy

306 \\/ N \
y

N\

Figure 3

U.S. Patent Feb. 2, 2016 Sheet 4 of 5 US 9,251,028 B2

a1~ '
\J& Run Program \)
S

¥

402 ™| Coliect code
noverage data

403 - Send code
N coverage daia to
CCM

Figure 4

U.S. Patent

Feb. 2, 2016 Sheet 5 of 5

US 9,251,028 B2

S0 Raceive code
\(coverage data
502 —~ \
- 508
</ Er% T Awatt yea
\\port’? /F fix
- ! ~ 509
; . identify code |/
503 7| Check code data unaffected by fix
against confidence = !
meagsure Collate any code e 510
I | coverage data |/
504 ~ 7 T received during fix
< Pass? | — period
\“\\(,/’
:
505 ~ Ret‘nove‘
instrumentation
from code
. Frovide de-
BOS -~

instrumentation
code as patch for
program

Figure b

US 9,251,028 B2

1

MANAGING CODE INSTRUMENTATION IN A
PRODUCTION COMPUTER PROGRAM

This application is based on and claims the benefit of
priority from Great Britain (UK) Patent Application
1213545.5, filed on Jul. 31, 2012, and herein incorporated by
reference in its entirety.

BACKGROUND

The present invention relates to managing code instrumen-
tation in a production computer program.

During the production of software, code coverage tools are
commonly employed which make use of instrumented code
to calculate the quality of testing in terms of the lines,
branches or method coverage in the software that occurs
when tests are run on the development software. The instru-
mentation of the code however comes with the added cost of
extra computational cycles, and therefore has a performance
reduction compared to non-instrumented code. Therefore
production code released to a customer does not typically
have this instrumentation code in place. However, when pro-
duction software is released, the supplier may not have fully
tested all of the source code. In other words production soft-
ware may be released without full test coverage.

SUMMARY

A method, system, and/or computer program product man-
ages code instrumentation in a production computer program.
Performance data from instrumentation code associated with
a portion of code of a production computer program is
received. One or more processors compare the performance
datato a predetermined performance threshold. In response to
the performance data meeting the predetermined perfor-
mance threshold, one or more processors remove the instru-
mentation code for the portion of code.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example only, with reference to the following draw-
ings in which:

FIG. 1 is a schematic illustration of a computer system
comprising a production computer program having one or
more code portions associated with instrumentation code,
according to one embodiment of the present invention;

FIG. 2 is a schematic illustration of a code coverage man-
ager program of FIG. 1, according to another embodiment of
the present invention;

FIG. 3 is a flow chart illustrating the deployment of the
computer program of FIG. 1, according to another embodi-
ment of the present invention;

FIG. 4 is a flow chart illustrating the processing performed
by a code coverage data reporting module associated with the
computer program of FIG. 1, according to one embodiment of
the present invention; and

FIG. 5 is a flow chart illustrating the processing performed
by the code coverage manager program of FIG. 2 in response
to the receipt of code coverage data from the instrumentation
code associated with the computer program of FIG. 1, accord-
ing to another embodiment of the present invention.

DETAILED DESCRIPTION

One embodiment of the present invention provides a
method for managing code instrumentation in a production

10

25

30

40

45

50

65

2

computer program, the method comprising the steps of:
receiving performance data from instrumentation code asso-
ciated with a portion of code of a production computer pro-
gram; comparing the performance data to a predetermined
performance threshold; and removing the instrumentation
code for the code portion if the performance data meets the
threshold.

The instrumentation code may comprise code coverage
code, the performance data may comprise code coverage data
for the portion of code and the threshold may comprise a
predetermined measure of code coverage. The method may
comprise the steps of: determining whether or not an error has
been reported for the production computer program; if an
error has been reported then determining whether the code
portion is affected by any fix provided for the error; if the code
portion is unaffected by any the fix then comparing the per-
formance data against a predetermined performance thresh-
old; and removing the instrumentation code for the code
portion if the performance data meets the threshold.

The instrumentation code may be arranged to provide test-
ing of the code portion during use in the production computer
program. The instrumentation code may be provided in the
code portion in response to performance data for the code
portion determined prior to the incorporation of the code
portion into the production computer program failing to meet
the threshold. The production computer program may com-
prise one or more further code portions without instrumenta-
tion code. In response to the performance data meeting the
threshold, the instrumentation code may be removed from
one or more corresponding instances of the code portion in
other production computer programs.

One embodiment of the present invention provides appa-
ratus for managing code instrumentation in a production
computer program, the apparatus being operable to: receive
performance data from instrumentation code associated with
aportion of code of a production computer program; compare
the performance data to a predetermined performance thresh-
o0ld; and remove the instrumentation code for the code portion
if the performance data meets the threshold.

One embodiment of the present invention provides a com-
puter program product for managing code instrumentation in
aproduction computer program, the computer program prod-
uct comprising a computer-readable storage medium having
computer-readable program code embodied therewith, the
computer-readable program code configured to: receive per-
formance data from instrumentation code associated with a
portion of code of a production computer program; compare
the performance data to a predetermined performance thresh-
o0ld; and remove the instrumentation code for the code portion
if the performance data meets the threshold.

Embodiments of the present invention enable testing to be
continued in operational production code. Instrumentation
code may be automatically removed once the associated code
is judged suitably tested.

Viewed from a further aspect, the present invention pro-
vides a computer program product for managing code instru-
mentation in a production computer program, the computer
program product comprising: a computer readable storage
medium readable by a processing circuit and storing instruc-
tions for execution by the processing circuit for performing a
method for performing the steps of the invention.

Viewed from a further aspect, the present invention pro-
vides a computer program stored on a computer readable
medium and loadable into the internal memory of a digital
computer, comprising software code portions, when said pro-
gram is run on a computer, for performing the steps of the
invention.

US 9,251,028 B2

3

Viewed from a further aspect, the present invention pro-
vides a method substantially as described with reference to
figures.

Viewed from a further aspect, the present invention pro-
vides a system substantially as described with reference to
figures.

With reference now to the figures, and particularly to FIG.
1, a computer system 101 comprises first and second com-
puters 102, 103 interconnected via a network 104. Each of the
computers is loaded with an operating system 105 for provid-
ing a processing platform for one or more application pro-
grams. In the present embodiment, the first computer 102 is
running a code coverage manager application program 106.
The second computer 103 is running a production application
program 107, which comprises a code coverage data report-
ing module (CCDRM) 108. The production application pro-
gram 107 comprises a plurality of code portions 109 and one
or more of the code portions 109 are associated with instru-
mentation code 110. In the present embodiment, the instru-
mentation code 110 is integrated with the respective code
portion 109 and arranged to provide performance data in the
form of code coverage data for the code portion 109. As each
instrumented code portion 109 is run during the operation of
the production application program 107 the respective instru-
mentation code 110 is arranged to produce the relevant instru-
mentation data in the form of code coverage data. In the
present embodiment, CCDRM 108 is arranged to collect the
code coverage data created by the instrumentation code 110
and periodically report the code coverage data to the code
coverage manager program 106 on the first computer 102.

With reference to FIG. 2, the code coverage manager pro-
gram 106 comprises code coverage management logic 201,
an error log 202, a code coverage log 203, a performance
threshold in the form of a code coverage threshold 204 and
program code files 205. The error log 202 comprises a log of
any errors that have been notified for the production applica-
tion program 107. The code coverage log comprises a log of
the code coverage data received from the CCDRM 108. The
code coverage threshold 204 comprises a predetermined
measure of code coverage for any given code portion 109. In
the present embodiment, the measure of code coverage com-
prises the number of times a given code portion 109 is run or
processed in the operation of the production application pro-
gram 107. In the present embodiment, the code coverage
threshold 204 is set at three. In other words, the code coverage
threshold 204 is met when a given code portion 109 has been
run or processed three or more times. The code files 205
comprise copies of the production code files for the produc-
tion application program 107. Some of the code files 205
include code coverage instrumentation code 110. Others of
the code files 205 comprise no code coverage instrumentation
code 110. In the present embodiment, the code files 205 are
provided to the code coverage manager program 106 on
deployment of the production application program 107. It
will be appreciated that code coverage threshold 204 could be
set a different values other than three.

The code coverage manager logic 201 is configured to
respond to code coverage data received periodically from the
CCDRM 108 by logging the code coverage data in the log 203
and then comparing the code coverage data received for each
relevant code portion 109 to the code coverage threshold 204.
If the threshold 204 is met then the code coverage manager
logic 201 is arranged to modify the relevant code portion 109
by removing the instrumentation code 110. The code cover-
age manager logic 201 is configured then to issue a patch for
the production application program 107 comprising the de-
instrumented code portion 109. In the present embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

4

the patch comprises an updated version of the relevant code
file 205 containing the de-instrumented code portion 109.

The code coverage manager logic 201 is further arranged,
in response to the receipt of code coverage data from the
CCDRM 108, to determine whether any errors are logged in
the error log 202 for the production application program 107.
If one or more errors have been logged then the code coverage
manager logic 201 is arranged to await a fix for the error. In
response to the fix being provided, the code coverage man-
ager logic 201 is arranged to identify the code portions 109
unaffected by the fix and to check the relevant code coverage
data for those unaffected portions 109 against the code cov-
erage threshold and to produce patches as appropriate.

Inthe present embodiment, the production application pro-
gram 107 is created in a software development process in
which development code is written, instrumented and exten-
sively tested. On completion of testing, the code portions in
the development code that are judged as having been
adequately covered by the testing have their associated instru-
mentation code removed. Those code portions that are judged
as not having been adequately covered or not covered at all by
the testing retain their instrumentation code. The production
code is then produced from the development code resulting in
the production application program 107 comprising one or
more code portions 109 containing instrumentation code 110
and the CCDRM 108. As noted above, the files 205 for the
deployed production application program 107 are made avail-
able to the code coverage manager program 106.

The testing and deployment process for the production
application program 107 will now be described with refer-
ence to the flow chart of FIG. 3. At step 301 testing of the
development code for the application program 107 is initiated
and the process moves to step 302. At step 302 the develop-
ment code is instrumented for so as to produce code coverage
data and the process moves to step 303. At step 303 testing is
performed on the instrumented development code, the result-
ing code coverage data collected and the process then moves
to step 304. At step 304 the instrumentation is removed from
the sufficiently covered portions of code and the process
moves to step 305. At step 305 the production code is created
from the partially de-instrumented development code and the
CCDRM 108 inserted before the production application pro-
gram 107 is deployed and a copy of the relevant files 205
provided for access by the code coverage manager program
106. The process then ends at step 306.

The processing performed by the CCDRM 108 will now be
described with reference to the flowchart of FIG. 4. Process-
ing initiated at step 401 in response to the running of the
production application program 107 and processing moves to
step 402. At step 402 code coverage data is collected from the
instrumentation code 110 for a predetermined period at which
point processing moves to step 403. At step 403 the collected
code coverage data is sent to the code coverage manager
program 106 and processing returns to step 402 and continues
reporting code coverage data as described above as long as the
production application program 107 runs.

The processing performed by the code coverage manager
program 106 in response to the receipt of code coverage data
from the CCDRM 108 will now be described with reference
to the flow chart of FIG. 5. Processing is initiated in response
to the receipt of code coverage data from the CCDRM 108
which is logged in the code coverage log 203 and processing
moves to step 502. At step 502 the error log 202 is checked to
determine whether any errors have been reported and
recorded for the production application program 107 and
which remain unresolved. If no such errors are identified then
processing moves to step 503. At step 503 the logged code

US 9,251,028 B2

5

coverage data for each relevant instrumented code portion
109 is checked against the code coverage threshold 204 and
processing moves to step 504. At step 504 ifthe code coverage
data meets the threshold, that is, in the present embodiment,
the code coverage data indicates that the relevant code portion
109 has been processed three or more times, then processing
moves to step 505. At step 505 the instrumentation code 110
is removed from all code portions 109 for which the associ-
ated code coverage data meets the threshold 204 and process-
ing moves to step 506. If at step 505 all instrumentation code
has been removed from all the files of the production appli-
cation program 107 then the CCDRM 108 is also removed. At
step 506 the relevant code files 205 comprising the de-instru-
mented code portions 109 are provided as a patch for the
production application program 107. Processing then moves
to step 507 and ends. If at step 504 the code coverage data for
a given code portion 109 does not meet the threshold 204 then
processing for the given code portion 109 moves to step 507
and ends.

If at step 502 one or more errors are identified in the errors
log 202 then processing moves to step 508. At step 508
processing awaits an input indicating that the errors have been
fixed and processing moves to step 509. At step 509 the code
portions 109 unaffected by the code changes implemented to
fix the errors are identified and processing moves to step 510.
At step 510 the code coverage data received during the error
fix period is collated with the logged code coverage data for
all of the unaffected code portions 109 and processing moves
to step 503 where the unaffected code portions 109 are pro-
cessed as described above.

In another embodiment the code coverage manager pro-
gram is arranged to wait for all instrumented code in a given
file to be removed before issuing a patch comprising the entire
file with all instrumentation removed.

In a further embodiment if an error is identified as logged
then, once the error is cleared, only the unaffected files are
assessed against the received or logged code coverage data.

In another embodiment, one or more files comprise a single
code portion. In other words, code files and code portions are
Synonymous.

In a further embodiment, code coverage data is received
from more than one production application program each
having a corresponding CCDRM collecting the code cover-
age data. In this embodiment, the code coverage data may be
treated separately for each production application program
from which it originates and instrumentation code is removed
only from corresponding production application programs. In
another embodiment, the code coverage data from a plurality
of production application programs is collected and pooled
and, if the code coverage threshold is met by the pooled data
then instrumentation code is removed from one or more of the
production application programs.

As will be understood by those skilled in the art, any
suitable type of testing and corresponding instrumentation
code and threshold may be applied to embodiments of the
invention.

As will be understood by those skilled in the art, in some
embodiments, instrumentation code may be removed from
the development code prior to the creation of the production
code so as to leave some instrumentation code present in the
production code. In other embodiments, instrumentation
code may be added to the development code prior to the
creation of the production code so as to add instrumentation
code present in the production code. Such added instrumen-
tation code may be provided in addition to instrumentation
code already present.

10

15

20

25

30

35

40

45

50

55

60

65

6

Embodiments of the invention enable testing to be contin-
ued in operational production code. Testing instrumentation
may be automatically removed once the associated code is
deemed suitably tested.

It will be understood by those skilled in the art that the
apparatus that embodies a part or all of the present invention
may be a general purpose device having software arranged to
provide a part or all of an embodiment of the invention. The
device could be a single device or a group of devices and the
software could be a single program or a set of programs.
Furthermore, any or all of the software used to implement the
invention can be communicated via any suitable transmission
or storage means so that the software can be loaded onto one
or more devices.

While the present invention has been illustrated by the
description of the embodiments thereof, and while the
embodiments have been described in considerable detail, it is
not the intention of the applicant to restrict or in any way limit
the scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled in the art. Therefore, the invention in its broader
aspects is not limited to the specific details of the representa-
tive apparatus and method, and illustrative examples shown
and described. Accordingly, departures may be made from
such details without departure from the scope of applicant’s
general inventive concept.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
computer program product or computer program. Accord-
ingly, aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and

US 9,251,028 B2

7

that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider). Java and all
Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the

10

15

20

25

30

35

40

45

50

55

60

65

8

functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

For the avoidance of doubt, the term “comprising”, as used
herein throughout the description and claims is not to be
construed as meaning “consisting only of”.

What is claimed is:
1. A method for managing code instrumentation in a pro-
duction computer program, said method comprising:

receiving, by a first computer, performance data from
instrumentation code associated with a portion of code
of a production computer program that is running in a
second computer, wherein said instrumentation code
comprises multiple code portions of instrumentation
code, wherein said instrumentation code comprises code
coverage code, wherein said performance data com-
prises code coverage data for said portion of code,
wherein said code coverage data describes a quantity of
times that the portion of code is executed and evaluated
by the instrumentation code, wherein a predetermined
performance threshold comprises a predetermined mea-
sure of code coverage, wherein said instrumentation
code is provided in said portion of code in response to
the performance data for said portion of code failing to
meet a predetermined performance threshold, wherein
said performance data is determined prior to an incor-
poration of said portion of code into said production
computer program, and wherein said performance data
is collected by a code coverage data reporting module
(CCDRM) in the second computer;

pooling, by one or more processors, the code coverage data
from multiple production computer programs;

comparing, by one or more processors, said performance
data to said predetermined performance threshold,
wherein the performance data describes a quantity of
times that the portion of code is executed in the multiple
production computer programs;

in response to said performance data meeting said prede-
termined performance threshold, removing, by one or
more processors, said multiple code portions of instru-
mentation code from said portion of code in the multiple
production computer programs;

determining, by one or more processors, whether or not an
error has been reported for said production computer
program;

in response to an error being reported for said production
computer program, determining, by one or more proces-
sors, whether said portion of code is affected by a fix
provided for said error;

identifying, by one or more processors, code portions in the
production computer program that are unaffected by the
fix;

in response to said portion of code being unaffected by said
fix, comparing, by one or more processors, said perfor-
mance data against the predetermined performance
threshold;

US 9,251,028 B2

9

in response to said performance data meeting said prede-
termined performance threshold, removing, by one or
more processors, said instrumentation code for said por-
tion of code;

in response to said performance data meeting said prede-

termined performance threshold, removing, by one or
more processors, said instrumentation code and said
CCDRM from one or more corresponding instances of
said portion of code in other production computer pro-
grams; and

in response to all instances of instrumentation code being

removed from the production computer program, issu-
ing a patch that is made up of the production computer
program with all instances of the instrumentation code
removed.

2. The method of claim 1, wherein said instrumentation
code is arranged to provide testing of said portion of code
during use in said production computer program.

3. The method of claim 1, where said production computer
program comprises one or more further portion of codes
without instrumentation code.

4. A computer program product for managing code instru-
mentation in a production computer program, the computer
program product comprising a non-transitory tangible com-
puter readable storage medium having program code embod-
ied therewith, the program code readable and executable by a
processor to perform a method comprising:

receiving performance data from instrumentation code

associated with a portion of code of a production com-
puter program that is running in a second computer,
wherein said instrumentation code comprises multiple
code portions of instrumentation code, wherein said
instrumentation code comprises code coverage code,
wherein said performance data comprises code coverage
data for said portion of code, wherein said code coverage
data describes a quantity of times that the portion of code
is executed and evaluated by the instrumentation code,
wherein a predetermined performance threshold com-
prises a predetermined measure of code coverage,
wherein said instrumentation code is provided in said
portion of code in response to the performance data for
said portion of code failing to meet a predetermined
performance threshold, wherein said performance data
is determined prior to an incorporation of said portion of
code into said production computer program, and
wherein said performance data is collected by a code
coverage data reporting module (CCDRM) in the sec-
ond computer;

pooling the code coverage data from multiple production

computer programs;
comparing said performance data to said predetermined
performance threshold, wherein the performance data
describes a quantity of times that the portion of code is
executed in the multiple production computer programs;

in response to said performance data meeting said prede-
termined performance threshold, removing said mul-
tiple code portions of instrumentation code from said
portion of code in the multiple production computer
programs;

determining whether or not an error has been reported for

said production computer program;
in response to an error being reported for said production
computer program, determining whether said portion of
code is affected by a fix provided for said error;

identifying code portions in the production computer pro-
gram that are unaffected by the fix;

10

20

25

40

45

55

60

10

in response to said portion of code being unaffected by said
fix, comparing said performance data against the prede-
termined performance threshold;

in response to said performance data meeting said prede-
termined performance threshold, removing said instru-
mentation code for said portion of code;

in response to said performance data meeting said prede-
termined performance threshold, removing said instru-
mentation code and said CCDRM from one or more
corresponding instances of said portion of code in other
production computer programs; and

in response to all instances of instrumentation code being
removed from the production computer program, issu-
ing a patch that is made up of the production computer
program with all instances of the instrumentation code
removed.

5. The computer program product of claim 4, wherein said

instrumentation code is arranged to provide testing of said
portion of code during use in said production computer pro-
gram.

6. The computer program product of claim 4, where said

production computer program comprises one or more further
portion of codes without instrumentation code.

7. A computer system comprising:

a processor, a computer readable memory, and a computer
readable storage medium; first program instructions to
receive performance data from instrumentation code
associated with a portion of code of a production com-
puter program that is running in a second computer,
wherein said instrumentation code comprises multiple
code portions of instrumentation code, wherein said
instrumentation code comprises code coverage code,
wherein said performance data comprises code coverage
data for said portion of code, wherein said code coverage
data describes a quantity of times that the portion of code
is executed and evaluated by the instrumentation code,
wherein a predetermined performance threshold com-
prises a predetermined measure of code coverage,
wherein said instrumentation code is provided in said
portion of code in response to the performance data for
said portion of code failing to meet a predetermined
performance threshold, wherein said performance data
is determined prior to an incorporation of said portion of
code into said production computer program, and
wherein said performance data is collected by a code
coverage data reporting module (CCDRM) in the sec-
ond computer;

second program instructions to pool the code coverage data
from multiple production computer programs;

third program instructions to compare said performance
data to said predetermined performance threshold,
wherein the performance data describes a quantity of
times that the portion of code is executed in the multiple
production computer programs;

fourth program instructions to, in response to said perfor-
mance data meeting said predetermined performance
threshold, remove said multiple code portions of instru-
mentation code from said portion of code in the multiple
production computer programs;

fifth program instructions to determine whether or not an
error has been reported for said production computer
program;

sixth program instructions to, in response to an error being
reported for said production computer program, deter-
mine whether said portion of code is affected by a fix
provided for said error;

US 9,251,028 B2

11

seventh program instructions to identify code portions in
the production computer program that are unaftected by
the fix;

eighth program instructions to, in response to said portion
of code being unaffected by said fix, compare said per-
formance data against the predetermined performance
threshold;

ninth program instructions to, in response to said perfor-
mance data meeting said predetermined performance
threshold, remove said instrumentation code for said
portion of code;

tenth program instructions to, in response to said perfor-
mance data meeting said predetermined performance
threshold, remove said instrumentation code and said
CCDRM from one or more corresponding instances of
said portion of code in other production computer pro-
grams; and

eleventh program instructions to, in response to all
instances of instrumentation code being removed from

5

10

12

the production computer program, issue a patch that is
made up of the production computer program with all
instances of the instrumentation code removed; and
wherein

the first, second, third, fourth, fifth, sixth, seventh, eighth,
ninth, tenth, and eleventh program instructions are stored on
the computer readable storage medium for execution by the
processor via the computer readable memory.

8. The computer system of claim 7, wherein said instru-
mentation code comprises code coverage code, said perfor-
mance data comprises code coverage data for said portion of
code, and said predetermined performance threshold com-
prises a predetermined measure of code coverage.

9. The computer system of claim 7, where said production
computer program comprises one or more further portion of
codes without instrumentation code.

#* #* #* #* #*

